Home

Frame Relay

6 Comments

Wokeh…alasan gw tulis artikel ini karena di CNAP diajarin juga

Frame relay diinvent oleh Eric Scarce as a simpler version of X.25 Protocol untuk digunakan di ISDN (Integrated Sevice Digital Network) interface

Sekarang Frame Relay uda sedikit implementasinya…uda digantiin ama MPLS

Jadi X.25 -> Frame Relay -> sekarang MPLS (multi protocol label switching)

Frame Relay menggunakan kabel Serial (V.35, Smart Serial, dll)

Dalam topologi Frame Relay, Router di LAN disebut DTE (data terminal equipment), Frame Relay Switch (class 4/5 switch) disebut DCE (data circuit-terminating equipment)

How it works???

Ketika network di router dengan “nomor” 102 mo kirim data…dia akan kirim ke Frame Relay Switch (yang terhubung adalah Switch A)

Nah…sebelumnya router ini harus diset dulu “nomor”nya…nomor ini disebut DLCI (data link control identifier) <– data link layer ini

Nah…nomor ini akan dicatat oleh si switch A…lalu dikirim ke switch B…trus ke C…trus ke D…dan ke router DLCI 201

Pertanyaannya adalah kok bisa tau si A HARUS kirim ke B…trus B harus kirim ke C ?? padahal di B bisa langsung ke D ?!?!

Jawabannya…di frame relay switching juga ada settingannya (ga dibahas di Cisco…nanti coba de gw bahas…kalo bisa..hahaha)

Jadi frame relay switch akan tau DLCI 201 harus dikirim ke port mana…DLCI 102 harus di kirim kemana…

Yang setting siapa (termasuk setting nomor DLCI ?? Frame Relay Service Provider

Settingan DLCI di router (yang akan kita konfig untuk bisa jalan di network frame relay) itu Local Significance

Artinya apa ?? DLCI ini value nya hanya di router itu aja…di router lain beda…

Contoh…kita mapping di Router A…untuk DLCI 102 anter ke Router B, tapi di Router B disetting DLCI 102 dianter ke router C (DLCI sama ga masalah)

Nah…fitur Router seakan2 tau ni packet mo dikirim kemana dengan melihat DLCI inilah yang membuat seolah2 ada sirkuit virtual (VC = Virtual Circuit)

Ada 2 VC…

  • SVC (Switched Virtual Circuit)…established dynamically by sending signaling messages to the network (CALL SETUP, DATA TRANSFER, IDLE, CALL TERMINATION)
  • PVC (Permanen/Private Virtual Circuit)….dikonfigurasi di Router (yang diajarin yang tipe ini)

Nah dalam fitur Frame Relay…kita juga bisa mengirimkan 2 atau lebih DLCI dalam 1 interface fisik serial yang sama…pake serial subinterface

Tidak hanya IP saja yang bisa dipake oleh Frame Relay, kita juga bisa pake IPX bahkan IPv6 over frame relay pun bisa

Nah…di data link layer ini…dalam bagian address inilah terdapat data2 DLCI

  • Flag…untuk nandain start and stop frame dari frame relay
  • Address…source DLCI dan destination DLCI
  • EA…extended address, biar nomor DLCI bisa lebih panjang (yang tadinya 3 digit..302,111,424, dll….jadi 4333,5678,dll)
  • Congestion Control…untuk sinyal network frame relay klo lagi penuh networknya
    • FECN = Forward Explicit Congestion Notification, bit yang dikirim dari FR Switch ke FR Switch yang lain lalu ke Router bahwa network Frame Relay lagi penuh sesak (bit yang di receive)
    • BECN = Backward Explicit Congestion Notification, bit yang dikirim dari FR Switch ke Router bahwa network Frame Relay lagi penuh sesak (bit yang di send)
    • DE = Discard Eligible
  • C/R …ga ngerti, kata Cisco ini undefined

======================================================

FRAME RELAY TOPOLOGY

…………………………………………………

…………………………………………………

…………………………………………………

======================================================

Frame Relay Address Mapping

Sebelum Router bisa transmit data over frame relay, dia harus tau DLCI dan assosiasi nya (contoh: DLCI 102 itu untuk tujuan 192.168.1.2). This address-to-DLCI mapping can be accomplished either by static or dynamic mapping.

Dynamic Mapping

Mapping secara dinamis ini akan di peroleh dari Inverse-ARP

Apa itu Inverse-ARP? Yaitu request layer 3 address (IP) dari DLCI yang diterima, beda dengan ARP…request MAC address dari IP yang diterima (tipically on Ethernet Switch alias switch yg biasa kita liat)

Klo ARP (address Resolution Protocol) itu dipake oleh switch untuk mapping MAC address ke IP yang bersangkutan (mapping layer 2 ke layer 3)

Klo Inverse-ARP dipake oleh FR Switch untuk mapping IP ke DLCI yang bersangkutan (mapping layer 3 ke layer 2)

Di Cisco Router…Inverse-ARP is enabled by default

Static Mapping

Ya uda…setting aja di routernya…DLCI 103 itu tujuan 10.1.1.4 misalnya…

======================================================

Local Management Interface (LMI)

LMI berguna untuk acquire information about the status of the network, LMI itu adalah keepalive mechanism yang bertugas mem-provide status informasi connection between DTE (Router) & DCE (FR Switch) connection dari frame relay

LMI ini tiap 10 detik sekali dikirim dari router

Klo encapsulation itu tugasnya dari Router satu ke Router lain dalam frame relay…

Klo LMI itu dari router ke switch frame relay

The switch and its connected router care about using the same LMI (baik Router dan Switch harus memakai LMI yang sama)

The switch does not care about the encapsulation. The endpoint routers (DTEs) do care about the encapsulation. (Router ke Router di Frame Relay harus pake encapsulasi yang sama…ya eyaa laaaa)

Tipe LMI itu ada 3

  • Cisco – the original LMI
  • ANSI – pake standar Amerika (T1.617 Annex D)
  • Q933A – pake standar ITU

Cisco IOS update 11.2 keatas…udah auto sense LMI, jadi bisa langsung auto config (ga disetel2 lagi config di routernya harus pake LMI apa)

======================================================

Split Horizon Issue

inget ga klo distance vector menggunakan fitur ini untuk mencegah routing loop, dengan cara mencegah informasi yang dikirimkan balik lagi ke interface yang sama

nah…klo di Frame Relay gimana ??

R1 punya 1 Serial Link…dalam satu serial link ini terdapat 2 DLCI (102,103)

Hanya saja…di Frame Relay Switch kan bukan Switch Ethernet (yang punya fitur Broadcast…makanya disebut NBMA), oleh karena itu keyword broadcast harus dimasukkan di router untuk mereplika frame relay packet

Nah…ketika R1 dapet routing update dari R2…dia mo kirim ke R3…karena split horizon rule menyatakan tidak boleh kirim dari interface fisik yang sama…ga dapet de R3 nya

Solusinya…dibuatlah Serial Subinterface (untuk masing2 DLCI)

Point-to-Point = 1 Physical interface to 1 subinterface / 1 interface

Point-to-Multipoint = 1 subinterface to multiple subinterface

======================================================

Frame Relay Terminology

  • CIR (Committed Information rate) – Speed yang dijanjikan oleh ISP

Klo ISP bilang “koneksi kami up to 5mbps” itu baru UP TO (bisa sampai)…actualnya mah ga segitu…

CIR itu…pemakaian 5mbps…ya up to 5mbps…tapi bisa lebih (ga kaya ISP sekarang..up to…malah kurang -__- ; )

Kelebihan pemakaian dari 5mbps itu disebut burst (dan ga bayar extra…flat rate charge)

Kok bisa??…ya kadang2 klo bandwidthnya lagi lowong dan ga ada yang make…kita bisa make kelebihan itu for free

  • Committed Burst (Bc) Information Rate (CBIR)

Yaitu sampai mana burst itu bisa dipake, klo mo burstnya lebih banyak dan lebih lama (tipikalnya 4-5 detik doank), harus bayar lagi

  • Discard Eligible (DE)

Yaitu kondisi dimana packet sudah sampai pada level Bc…packet ini akan ditandain dengan DE alias klo network uda mulai penuh, ini packet akan di mark untuk di drop

Liat di bagian Frame Relay Encapsulation diatas de…

OSPF (Open Shortest Path First)

3 Comments

Bagian dari Dynamic Protocol yang merupakan Link-State…OSPF akan kita kupas tuntas

Secara tajam…setajam…..SILET

*CUTTTT !!!!….kebanyakan infotaintment luh jadi alay !!


Untuk langsung konfigurasi bisa lihat disini

OSPF dikembangkan oleh IETF, but… at the same time, ISO was working on a link-state routing protocol of their own, Intermediate System-to-Intermediate System (IS-IS). Not surprisingly, IETF chose OSPF as their recommended IGP (Interior Gateway Protocol)

-.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.-

LSP (Link State Packet) dari OSPF

packet untuk OSPF konvergensi disebut LSP

OSPF LSP packet itu ada 5 tipe:

  1. Hello, tidak perlu dijelaskan
  2. DBD, ini penyakit yang disebarkan oleh nyamuk *ehem* DBD packet berisi list versi singkat dari sending router link-state database dan digunakan oleh receiving router untuk meng-compare dengan miliknya.
  3. LSR, receiving router bisa meminta (request) more information di DBD yang diterima
  4. LSU, ini packet untuk merespon LSR dan juga untuk announce new information. LSU contain many Link-State Advertisement (LSA)
  5. LSAck, ini paket ketika LSU diterima oleh receiving router

Jadi…router yang satu dengan yang lain saling mengirimkan LSA miliknya (yang berisi …dan meng-compare / membandingkan dengan LSA yang di terima (router A bilang link ke X mati, tapi menurut B link ke X ga mati…nanti router A akan “mikir” , berarti dia bisa saja kirim paket lewat B untuk ke X)

Liat cara kerja Link-State

-.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.-

Hello Packet

Hello packets are used to:

  • Discover OSPF neighbors and establish neighbor adjacencies.
  • Advertise parameters on which two routers must agree to become neighbors.
  • Elect the Designated Router (DR) and Backup Designated Router (BDR) on multiaccess networks like Ethernet and Frame Relay.

Yang penting2 apa aja sih??:

  • Type: OSPF Packet Type =Hello (1), DBD (2), LS Request (3), LS Update (4), LS ACK (5)
  • Router ID: IP dari router yang ngirim paket
  • Area ID: area/wilayah darimana paket itu berasal
  • Network Mask: Subnet mask associated with the sending interface
  • Hello Interval: number of seconds between the sending router’s hellos
  • Router Priority: Used in DR/BDR election (nanti dibawah dijelasin)
  • Designated Router (DR): Router ID of the DR, if any
  • Backup Designated Router (BDR): Router ID of the BDR, if any
  • List of Neighbors: lists the OSPF Router ID of the neighboring router(s)

Before two routers can form an OSPF neighbor adjacency, they must agree on three values: Hello interval, Dead interval, and network type

  • Hello Interval (default): 10 second on multi-access and 30 on *non-broadcast multi access (NBMA) such as Frame Relay, X.25, ATM
  • OSPF Hello packets are sent as multicast to an address reserved (224.0.0.5)
  • Using a multicast address allows a device untuk meng-ignore packet jika sebuah interface tidak OSPF Enabled. Jadi ga perlu repot2 proses paket (saves CPU processing time on non-OSPF devices).
  • Dead Interval is the period (dalam detik) that the router will wait to receive a Hello packet from neighbor before declaring that neighbor “down.”
  • Dead Interval for Multi access is 40 second and NBMA is 120 second
  • Network Type…
  • Hello packet juga menentukan DR (Designated Route) dan BDR (Backup DR) guna menghemat/memangkas traffic yang ada di MULTIAKSES NETWORK (klo bukan multi akses…ga perlu DR & BDR)

*NBMA adalah network2 yang bisa multi akses (jadi 1 router bisa di akses dari beberapa router) tapi ga bisa broadcast

Hello packet ini juga mengirimkan OSPF router ID, buat apa sih ?? sebagai “nama” dari router yang menjalankan OSPF

Contoh: interface fa0/0 di router Cisco 1841 dikasih ip 10.1.1.1 dan di fa0/1 dikasi 172.16.1.1 , maka yang menjadi ID si router OSPF ini adalah 172.16.1.1 (nama si router nya bukan paijo, tukimin, dan lain-lain haha…namanya pake IP)…dan ya, IP yang paling tinggi yang jadi router ID (klo kita ga set manual yah..)

*loopback interface adalah interface “bayangan”, klo interface FastEthernet dan serial secara fisik bisa dilihat…loopback tidak, purpose nya bisa untuk router ID di OSPF atau untuk simulasi network

-.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.-

LSU (Link State Update)

Dalam LSU terdapat 1 atau lebih LSA (Link State Advertisement), jadinya kadang2 LSA bisa di sebut LSU

LSA sendiri adalah BROADCAST packet (ya..broadcast) yang isi paket nya terdiri dari informasi2 yang dibutuhkan oleh router seperti neighbor information dan path cost

LSA inilah yang meng-influence routing table di OSPF

Header Packet dari LSA itu 20 byte. didalam LSA Header itu terdapat link-state ID

updated: lsa type 8 for OSPFv3 (IPv6 OSPF)

-.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.-

Cisco OSPF Metric

Seperti yang kita ketahui…RIP memakai Hop untuk metric dan EIGRP memakai bandwidth dan delay (walaupun ada 2 lagi)

OSPF ini memakai cost, yang mana cost ini adalah Bandwidth-bandwidth juga ujung2nya…haha

-.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.-

OSPF in multi-access network

OSPF defines five network types:

  • Point-to-point
  • Broadcast Multiaccess
  • Nonbroadcast Multiaccess (NBMA)
  • Point-to-multipoint
  • Virtual links

Point-to-Multipoint, Broadcast Multiaccess, dan NBMA biasanya koneksi OSPF lewat Frame-Relay

klo koneksi OSPF lewat Ethernet Switch (Switch biasa atau Switch Layer 3/Multilayer Switch) = Broadcast Multiaccess (Multiakses karena via Switch, broadcast karena fitur switch memang menyediakan fungsi broadcast)

klo koneksi OSPF lewat Frame-Relay Switch (Router yang menjalankan Switching versi Frame-relay) = NBMA (multiakses karena via “Switch” juga, tapi Frame-Relay Switch ga ada fitur broadcast)

Virtual-Link akan dijelasin dibawah (tipe2 area OSPF)

Masalah dalam OSPF di multi akss adalah Flooding LSA (liat point diatas)

Figure 1. LSA Flooding

Masalah OSPF di multi akses network di ibaratkan seperti ini:

Gw berada di suatu ruangan yang penuh dengan orang, bagaimana jadinya jika gw harus introduce diri gue ke semua orang itu, dan masing2 orang lain juga harus mengenalkan diri ke yang lain pula

Udah gitu pas gw udah kenal dengan satu orang, gw harus kenalan lagi dengan yang lain dan GW HARUS NGASIH TAU NAMA YANG UDA GW KENAL KE ORANG YANG LAIN LAGI!!!

Mateee…

Liat cara kerja Link-State (Kalau bingung)

-.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.-

Solusi untuk OSPF Multi-Akses

Yaitu dengan meng-elect (menunjuk) satu router untuk jadi “leader” yang mengirimkan LSA, yang dinamakan DR (Designated Router) dan “cadangan”nya kalau2 DR nya mati…yang disebut Backup Designated Router (BDR)

Klo dipikir2…mirip kek fitur switch yang disebut VTPCuma switch server yang boleh kasih info VLAN ke switch yang lain

-.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.–.-.-.-

DR BDR Election Process

Router ID (entah Router-ID, IP interface, atau IP Loopback) yang paling tinggi akan menjadi DR

The election process only takes a few seconds. If all of the routers on the multiaccess network have not finished booting, it is possible that a router with a lower router ID will become the DR. This could be a lower-end router that took less time to boot. (bisa jadi klo router yang ID nya paling tinggi itu LAMA bootingnya…dia ga jadi DR)

Contoh dari gambar diatas…Router C lelet, yang jadi DR adalah Router B…Router C selesai booting…Router B TETEP JADI DR dan Router A jadi BDR

Kalau Router B mati, akan digantikan oleh Router A…nah untuk “suksesor” WAKIL PRESIDEN nya kosong

wakil presidennya uda jadi presiden…presidennya mangkat kek Bapak Soeharto digantikan oleh Bapak Habibie

disinilah router A akan jadi BDR

pertanyaannya bisa ga di rubah “prioritas”nya ??? bisa…ada commandnya koq

bahkan kita bisa modifikasi timer nya (liat paling atas)

-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-

Tipe Route OSPF

klo RIP diwakili dengan huruf R di routing table dan EIGRP dengan D (DUAL), maka di OSPF terdapat 4 type of route

  • O – Rute OSPF biasa (intra area)
  • O IA – Rute OSPF yang didapat dari OSPF area lain
  • O E1 – Rute OSPF yang didapat dari different routing protocol
  • O E2 – Rute OSPF yang didapat dari different routing protocol

trus bedanya E1 dan E2 apa ???

E1 – biasanya digunakan untuk menghubungkan rute2 dari berbagai macam routing protocol didalam satu ISP, metricnya akan bertambah sendiri tergantung dari berapa besar cost (bandwidth) yang dilalui tiap titik.

E2 (Default) – bedanya dengan E1 adalam metricnya tetap…contoh, klo E2 metricnya 1120…di SEMUA router ospf akan bilang metricnya 1120…tapi klo E1 akan dikalkulasi lagi, tergantung dari berapa banyak link yang dilewati

ABR = Router yang menghubungkan beda area

ASBR = Router yang menghubungkan OSPF dengan Routing protocol lain

-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-

Tipe Area dalam OSPF

1. Standard Area – yang biasa (kirim summary, link update, dan external route)

2. Backbone Area – atau yang biasa disebut Area 0, semua area yang terhubung ke Area 0 akan bisa ping2an, Backbone juga salah satu standard area

OSPF Rules: semua area selain area 0 (contoh area 1) harus terhubung dengan area 0, apa lagi kalu mau ke area lain (contoh ke area 2, area 2 ini juga harus terhubung ke area 0)

OSPF Area

Cisco merekomendasikan maksimum 50 router per-area (biar ga berat router kerjanya ni router2 low-end, OSPF itu makan CPU Process tinggi)

nah, klo ada area yang lebih dari 50 router gimana? dibikin area baru untuk router nya

katanya ga bole terhubung ke area selain area 0? ini gunanya Virtual-Link (fitur OSPF agar area selain area 0 seakan-akan terhubung langsung ke area 0/backbone area)

OSPF Area

 

di router2 perbatasan antar area (ABR – Area Boundary Router), di konfig OSPF Virtual-Link

3. Stub Area – ga nerima external route. Klo mo kirim ke luar, router cuma kirim lewat default route (0.0.0.0). Stub area ga bisa punya ABR (ya eyaa laaa)

4. Totally Stubby Area – ga nerima summary route dan external route (klo stub masi nerima summary route), tipe Area ini cuma Cisco Propiertary

5. Not-So-Stubby-Area (NSSA) – sama kek stub2 yang lain, cuma dia boleh punya ASBR dan bisa nerima internal dan external (cuma memang ga diterusin ke external networknya)…pake LSA tipe 7

NSSA ini ibarat klo di view jaringan kita itu STUB…cuma dibalik stub itu ada routing protocol lain yang punya beberapa network (router kita ternyata ASBR)

6. Totally Stubby NSSA – apaan lagi nihhh??? sama kek  NSSA, cuma hanya default route aja

-.-.-.-.-.-.-.-.-.-.-.-.-.-..–.-.-..-.-.-.-.-..-.-.-.-..-.-.-.-.-.-.-.-..-.-

OSPF Superbackbone

Super Backbone dipake klo Core/Backbone nya bukan OSPF

maksudnya? biasanya ada di topologi customer ke ISP, dimana customer router (CE – Customer Edge) terhubung ke ISP Router (PE – Provider Edge) melalui OSPF convergence, sementari router2 didalam ISP yang terhubung ke PE pake non-OSPF (biasanya BGP dan MPLS)

OSPF Superbackbone

nah, dari gambar diatas klo CE Router mau propagate routing table nya ke Site IGP (Branch Office misalkan), mau ga mau harus di retribusi ke BGP, trus di PE router yang deket Site IGP juga BGP harus di retribusikan kembali ke OSPF

hasilnya akan jadi External OSPF (O E2 atau O E1) yang membuat kita tidak bisa men-summarisasi external area dan stub area akan susah di implement, dengan super backbone akan jadi Internal Inter Area OSPF (O IA)

dengan OSPF Super Backbone, ISP dengan BGP-MPLS nya akan bertindak seakan-akan area 0 (thats why Super Backbone), caranya dengan mengimplementasikan BGP Attributes dan Extended Community (belajar BGP yah ^_^ )

 

Older Entries Newer Entries